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Jiří Ulrich
Faculty of Electrical Engineering

Czech Technical University in Prague
Prague, Czech Republic

ulricji1@fel.cvut.cz

Tomáš Rouček
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Abstract—Social insects, especially honeybees, play an essential
role in nature, and their recent decline threatens the stability
of many ecosystems. The behaviour of social insect colonies is
typically governed by a central individual, e.g., by the honeybee
queen. The RoboRoyale project aims to use robots to interact
with the queen to affect her behaviour and the entire colony’s
activity. This paper presents a necessary component of such
a robotic system, a method capable of real-time detection,
localisation, and tracking of the honeybee queen inside a large
colony. To overcome problems with occlusions and computational
complexity, we propose to combine two vision-based methods
for fiducial marker localisation and tracking. The experiments
performed on the data captured from inside the beehives demon-
strate that the resulting algorithm outperforms its predecessors
in terms of detection precision, recall, and localisation accuracy.
The achieved performance allowed us to integrate the method
into a larger system capable of physically tracking a honeybee
queen inside its colony. The ability to observe the queen in fine
detail for prolonged periods of time already resulted in unique
observations of queen-worker interactions. The knowledge will
be crucial in designing a system capable of interacting with the
honeybee queen and affecting her activity.
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Fig. 1. Concept of the RoboRoyale system: Artificial agents are used to
infiltrate the honeybee queen’s court to affect her behaviour and, thus, the
activity of the honeybee colony. Courtesy of [1]

I. INTRODUCTION

Honeybees are the primary pollinators of flowering plants
and, thus, are a crucial species to the earth’s ecosystem.
Around 400 billion US dollars worth of annual global food



production relies on their contribution [2]. Individual bees are
capable of pollinating plants in an area of 300 km2 around their
hive, and it is estimated that a colony visits more than 500,000
flowers per year [3]. In natural ecosystems, bees support the
reproduction and spread of plants that provide food, building
and nesting materials, and shelter for animals [1].

All this is possible because honeybees are eusocial insects,
and the bee colony acts like a singular superorganism. Much
of the coordination is decentralised [4], for example, through
the waggle dance, where a successful worker bee forager
transmits information about a food source to other worker
bees [5], [6]. However, an important central component of the
superorganism is the honeybee queen, which is responsible
for the growth of the bee colony and the reproduction of the
superorganism. Since these essential functions depend on a
single individual, it is crucial that the bee colony and the queen
are in a constant exchange of information. This information
exchange, as well as behavioural control from the queen to the
workers, is regulated to large parts through pheromones [7].
The essential pheromone produced by the queen is the Queen
Mandibular Pheromone (QMP). This pheromone transmits
information about the presence and status of the queen to other
bees in the colony [8]. It attracts drones during their mating
flight, suppresses the development of ovaries in workers [9],
[10], and influences the behaviour of the other bees in the
colony in many additional ways. [7], [11]. The worker bees
that interact with the queen bee directly are called retinue bees
or court bees. They feed the queen, groom her, and ensure that
the queen’s pheromones are distributed sufficiently throughout
the hive. When the queen shows little locomotive activity, they
converge around her to form a characteristic pattern called the
queen’s court.

These worker bees are the main recipients of communica-
tion from the queen; they act as the interface between the
queen and the rest of the colony.

The EU Future and Emerging Technologies project
‘RoboRoyale’ aims to integrate a set of biomimetic robots
into the queen’s court to affect the queen’s behaviour and the
transmission rate of her pheromones [1]. Affecting the queen
allows influencing the brood production, as well as the activity
of the entire colony, which, in turn, impacts the surrounding
ecosystem through foraging and pollination. In short, the
integration of robotic agents into the court would allow for
optimising the hive’s macroscopic variables by regulating the
queen’s pheromone transfer to the colony.

To perform the integration, we will deploy a robotic manipu-
lator that will continuously track the queen. The manipulator’s
head will consist of a mechatronic system capable of moving
the artificial agents in the queen’s vicinity, see Figure 1. The
concept of the robotic system is described in [1], and a more
detailed description of its mechanics is described in [12]. To
prevent any harm to the queen, the manipulator must be able to
track her precisely and reliably. Moreover, the artificial agents
must be accepted by the queen as well as the other worker
bees. This requires not only that their shape and material are
compliant but also that their motion patterns and behaviour

match those of the court bees.
Therefore, prior to the deployment of the manipulator, we

constructed a system capable of continuous observation of the
queen’s vicinity. These observations would provide the data
necessary to analyse the court bees’ interactions with the queen
so that the robotic system could imitate these. This, again,
requires precise and reliable tracking of the honeybee queen
inside an observation hive, which is the focus of this paper.

II. SYSTEMS USED FOR BEE TRACKING

Much research on honeybee behaviour is done using obser-
vation hives, a scaled-down version of the hives utilised for
commercial purposes in apiaries [13]. They usually consist
of one to three vertically arranged honeycombs, which are
enclosed by two glass panes so that the bees can only access
the honeycomb area via a designated entrance which leads to
the outside. Computerised observation hives have additional
cameras pointed at the combs and connected to equipment for
data storage and analysis, see Figure 2. To provide bees with
naturally dark conditions, the hive is illuminated with infrared
or near-infrared light that is invisible to bees [14].

Fig. 2. Observation hive setup - two infrared cameras on the left are recording
two combs on the right.

Honeybee colonies present a particular challenge for detec-
tion and tracking systems. The core problem is the high density
of nearly identical specimens that are constantly moving and
occluding each other. Another issue is that the observations
are performed through the glass that covers the combs. As the
temperature and humidity inside the hive change, fog forms
on the glass, significantly reducing the image quality. This
is further amplified by the wax or other residuals that bees
sometimes deposit on the glass. Bees also tend to slightly
alter the shape of the combs, causing a loss of focus in the
affected areas. Fast movement of the bees, e.g. during their
waggle dance, combined with low-intensity (near-)infrared
lights, results in motion blur. Finally, the level of detail needed
to analyse the behaviour of small specimens combined with the
requirement to monitor the entire comb results in the need to
use high-resolution cameras. This, in turn, requires large stor-
age and significant computational power if the analysis should



be performed online. Conventional, general-purpose detection
methods, based on YOLO [15] or SURF [16] , struggle to
achieve the required performance in these situations.

However, there are a few systems capable of tracking
individual bees in an observation hive setting. The system
proposed in [17] exploits the subtle differences (or ‘pixel-
personalities’) in the individual bees. The resulting system [18]
uses a segmentation convolutional neural network (CNN) built
upon the U-Net architecture. Based on the segmentation, indi-
vidual detections are generated. It adds a temporal component,
therefore reducing the size of the network to 6% of the
original [17]. The previous frame is used to leverage the
spatio-temporal information encoded in a video sequence. This
allows one to reduce the size of a CNN while preserving
its accuracy. From small sequences of detections that are
spatially linked through subsequent frames, pixel personalities
are learnt about individual bees. The personalities are used
to link the bee detections with the temporal detections of
individual bees throughout the recording [17]. This markerless
system is capable of detecting the positions of individual bees
and their orientations, but it cannot differentiate between a
worker bee and a queen.

One of the ways to alleviate the aforementioned problems
and increase tracking accuracy is the usage of easy-to-detect
markers. Many of these methods are inspired by the fiducial
markers commonly used in robotics research, such as the
square fiducials AprilTag [19] or ArUco [20] or the circular
ones like TRIP [21] or WhyCode [22], [23].

The BEEtag marker [24], which was designed to track
small animals, is a derivative of the AprilTag [19]. The tag
features a black square with a white border with an inscribed
identification matrix on it. The 5×5 matrix offers a 15-bit
encoding with an additional 10-bit correction. Theoretically,
the 15-bit encoding allows one to distinguish over 30 thousand
individuals. However, the BEEtag authors limit the possible
code combinations to resolve the orientation estimation ambi-
guity of the square marker. Moreover, they introduce additional
constraints on the code’s Hamming distance, producing two
BEEtag versions with 7000 and 110 unique tags, respectively.
Reliable recognition of the BEEtag marker requires that the
width of its diagonal is at least 50 pixels. Given that the size of
the marker on the queen’s thorax is limited to about 2 mm and
the size of the monitored combs is around 400 mm, the min-
imal required image resolution would exceed 10000×10000
pixels.

Another fiducial marker Circulatrix was specifically de-
signed for honeybees [25]. The marker, which is printed on
polyester film, is slightly curved to adjust for the shape of
the worker bee’s thorax, as shown in Figure 4. The marker’s
central element is designed to provide not only the position
but also the orientation of the bee to which it is attached. The
elements used for identification are arranged around the central
pattern, achieving 12-bit encoding that allows distinguishing
over 4000 individuals. An impressive BeesBook system was
based on the Circulatrix marker [26]. The BeesBook system
first constructs tracklets, which are trajectories of individual

Fig. 3. BEEtag markers attached to a group of cockroaches. Courtesy of [24]

bees in consecutive frames. The tracklets are subsequently
merged into longer tracks, capturing the movement of each
marked bee in the honeybee colony. Although the circularity of
the marker means that it can be slightly smaller than BEEtag,
achieving its reliable detection across a standard-sized comb
still requires significant camera resolution.

Fig. 4. Circulatrix markers glued onto the bee’s thoraxes. Courtesy of [26]

None of the aforementioned systems achieves real-time
performance when processing high-resolution images. Unfor-
tunately, high resolution is required because the monitored area
of a honeycomb is large, and the level of detail needed is high.

To deal with the problem, we opted to build our detection
on the WhyCon marker [22] and its derivative WhyCode [23].

To reliably detect the honey bee queen, we need a system
that is capable of detection even at lower resolution in the
observation hives, and that is accurate in differentiating the
queen and worker bees. ArUco markers must be quite large
compared to the size of a bee and are highly susceptible
to occlusions. The resolution of BeesBook (Circulatrix) and
BEEtag markers used in [27] would, in our case, require the
processing of images with resolutions exceeding 7000×7000
pixels. The markerless system cannot track the queen in the
long term because the pixel personality is not reliable enough
to re-identify the queen after the loss of tracking, for example,
due to occlusions or the queen’s absence. Moreover, the U-net



network, on which the markerless tracking is based, is not
meant for real-time applications. In particular, real-time track-
ing of the queen in four 12Mpx images (our configuration)
would require 24 NVIDIA GeForce RTX 3070Ti graphics
cards per hive. Therefore, we chose WhyCode because of its
ability to detect markers even at a lower resolution [22] and
in real time, and the markers can be easily printed on paper.

III. METHOD DESCRIPTION

The proposed system, WhyComb, is based on the Why-
Code [23], [28] system, and it is enhanced to improve the
detection and localisation of a marker attached to a bee in an
observation hive. While the WhyCode offers high pose esti-
mation precision even in challenging illumination conditions,
it can track a signification number of markers in real time
without specialised hardware. One of the dominant features
of the marker is the high detection distance, which directly
translates into good segment detection even when the marker
has low resolution. This feature is advantageous, especially
when only a single camera is used to observe the entire comb,
resulting in a marker diameter smaller than 25 pixels. Although
the marker supports a versatile encoding system for unique
identification, it is not necessary to use any marker with a
higher number of bits than two because there is only one queen
in a colony. Also, such a low-bit encoding does not restrict the
detection conditions compared to a higher-bit encoding while
still providing orientation estimation.

A. Dealing with occlusions

The prominent characteristic of any eusocial insect is their
mutual interaction which causes partial marker occlusions.
In our case, marker occlusions are caused by the worker
bees’ interactions with the queen. As the original WhyCode
detection method was not designed to be resistant to occlusion,
even minor obstructions can hamper successful detection de-
pending on the immediate segmentation threshold. Examples
of such occlusions, where the marker is partially visible, but
the WhyCode method cannot detect it, are shown in Figure 5.

Fig. 5. Examples of partial marker occlusions

To ensure the best continuous tracking possible, the Why-
Code system is extended as indicated in Figure 7. The image
captured by the camera is processed using the WhyCode
method, and the detected marker parameters are passed for
further analysis to filter out false positive detections. If the
detection is evaluated as successful, it is passed to an ‘esti-
mated position’ buffer. The position from the buffer is then
used as an initial position for a subsequent convolution step,

which further refines the marker position and places the result
back in the position buffer. In other words, the convolution
continuously updates the position buffer with its last estimates,
tracking the marker during its occlusions. However, when the
WhyCode method detects the marker, the position buffer is
updated with the WhyCode detection result, reinitialising the
convolution-based tracker.

The convolution kernel has to capture the shape of the
marker as precisely as possible. However, for computational
efficiency, the unique marker encoding used for orientation
estimation is suppressed in the convolution kernel, as shown
in Figure 6. This kernel allows rotationally invariant detection,
meaning that the convolution can only be performed in the 2D
domain. This avoids the need to calculate the convolution for
all possible marker orientations, which would be computation-
ally inefficient.

Fig. 6. Ideal shape of the WhyCode marker, its real examples in the captured
images and the convolution kernel used to refine its position. The red colour
indicates areas which are not part of the marker or the convolution kernel.

Suppose the queen’s marker is completely obscured. Then,
the maximum of the convolution could drift away from the
queen due to the marker’s structural resemblance to the
surrounding comb and because the convolution will always
produce some maximum when applied to an image. This is
why we have to incorporate the continuous reinitialisation
of the convolution using WhyCode estimates, as shown in
Figure 7. Moreover, we need to suppress situations where the
WhyCode method would provide a false positive detection, as
the convolution would start to produce false detections until it
is reinitialised correctly.

B. Suppressing false positive detections

The combs of the hive consist of slightly elliptical cells,
and the larvae in their centre also form elliptical shapes. This
makes the cells susceptible to being mistaken for the queen’s
marker. Moreover, comb cells are not the only elements that
can be falsely detected, as circular bits of debris often appear
scattered across the comb.

Fig. 7. Method overview: The positions of the WhyCode detector are filtered
and used to reinitialise the convolution-based tracker.



To deal with the problem, we take advantage of WhyCode’s
eigenvalues and eigenvectors, which describe the detected
segment. This allowed us to construct an additional filtering
step based on the marker’s expected shape of the inner ellipse.
In particular, we verify if the outermost pixels of the inner
white segment of the marker are located within an expected
range from the detected marker centre. First, we transform the
coordinates of each pixel of the inner segment into a canonical
coordinate system as follows:

xp =
v2 (xo− xc)− v1 (yo− yc)

2
√

λ2
,yp =

v2 (yo− yc)+ v1 (xo− xc)

2
√

λ1
,

(1)
where λ0,λ1 are the eigenvalues of the segment, v1 and v2 are
elements of the dominant eigenvector, xc,yc are the coordinates
of the centre of the segment, and xo,yo are the original
coordinates of the transformed pixel. Equation 1 corresponds
to centring the pixel coordinates, rotating them to align with
the coordinate system and scaling them by the segment size.
Thus, if applied to a correctly detected segment, Equation 1
would transform all its pixel coordinates into a unit circle.
This means that the transformed outermost pixels of the inner
segment circle, as shown in the left part of Figure 6, would
appear only at a specific distance. By setting a range of allowed
distances, we can filter out detections with inner segments
that do not reflect the expected marker shape. Thus, our filter
calculates the squared distance d of the outermost pixel as

d = max
p∈P

(x2
p + y2

p), (2)

where P are all pixels in the inner segment. After calculation
of the parameter d, we simply discard all segments with d <
0.4 (inner segment too small) or d > 0.6 (inner segment too
large). Furthermore, we also filter out all detections with a
radius smaller than 10 pixels.

For the sake of interoperability, the aforementioned im-
provements were integrated into the localisation system as a
Robot Operating System (ROS) node.

IV. EXPERIMENTS

To evaluate the impact of the modifications, we compare
the performance of the WhyComb method with the original
WhyCode algorithm, as well as with standard convolution.
First, we measured the localisation accuracies of both methods
and compared them using a Wilcoxon pairwise test. We also
calculated the cumulative distribution function of the locali-
sation errors to provide further insight. Finally, we compared
the precision and recall of the methods.

A. Evaluation datasets

Our evaluation datasets were recorded at the University of
Graz, Austria. The setup consisted of a single observation
hive 2 containing two combs. Four 4000×3000 px infrared
cameras were installed to observe both sides of the two
combs. Each camera was connected to an NVIDIA Jetson
Nano computer that was running the WhyComb method. These

four computers were streaming their results to a central PC
that stores the images. We took approximately 10 hours of
recording from the system, containing around 27000 frames
and used them to create two evaluation datasets.

The ‘Occluded’ dataset contains 875 images located at the
end of the 27000 frame sequence. By that time, the worker
bees had accepted the marker on the queen, so they treated it
as a part of her body and frequently crawled over it, causing
frequent occlusions. This dataset was used primarily to evalu-
ate the impact of the improvements proposed in Section III-A
onto the robustness of the system to occlusions.

The second ‘FalsePos’ dataset contained 635 frames with
false positive detections spread across the original 27000 frame
sequence. This dataset was used to verify the efficiency of the
filtering techniques proposed in section III-B.

Fig. 8. Detail of an annotated frame of the ‘Occluded’ dataset.

The ‘Occlusions’ dataset was manually annotated in order
to get the positions of the marker in pixels in each frame. We
denote the manually obtained position of the marker in the
i-th frame of the dataset as xgt

i = (xgt
i ,y

gt
i ) - the position is in

pixels.

B. Localisation error

To calculate the localisation error, we analysed the ‘Oc-
cluded’ dataset by the WhyCode and WhyComb methods,
as well as by a convolution-based detection described in
Section III-A. The positions of the marker provided by a
particular method m are denoted as xm

i = (xm
i ,y

m
i ) In the case

that the method failed to detect the marker in the ith frame,
we carry the last detection over from the previous one, that is,
xi = xi−1 in the case of no detection. The localisation error in
the ith frame of a method m is calculated as ei = ||xm

i −xgt
i ||.

Thus, each method m produced a vector em consisting of the
values of em

i . The error vectors em are the primary data entry
for the subsequent analysis.



C. Statistical testing

To conclude which method performs statistically signifi-
cantly better, we used the Wilcoxon pairwise test on pairs of
error vectors em created from the same dataset. The Wilcoxon
pairwise test is a non-parametric test used for two independent
samples that do not need to have a Gaussian distribution. Its
null hypothesis is that, for randomly selected values X and Y
from two populations, the probability that X is greater than Y
is equal to the probability that Y is greater than X. Rejecting
the null hypothesis means that the two samples were drawn
from different distributions.

We performed the Wilcoxon test on the WhyCode-
WhyComb and WhyCode-convolution error vector pairs. In
both cases, the p-value of the Wilcoxon pairwise test was
less than 0.001, indicating that the precision of these methods
differs in a statistically significant way. Comparison of the
mean error values of the methods, as shown in I, indicates
that the WhyComb method outperforms the original WhyCode
method in terms of accuracy.

TABLE I
AVERAGE ERROR OF THE PROPOSED WHYCOMB METHOD COMPARED TO

THE ORIGINAL WHYCODE AND CONVOLUTION-BASED DETECTION.

Method WhyComb WhyCode Convolution
Average error [px] 4.3 10.5 134.2

D. Qualitative analysis

For a qualitative comparison of the methods, we computed
the cumulative distribution functions of the error vectors. The
cumulative distribution functions show the probability that
the localisation error of a particular method is lower than a
certain value. This allows a better qualitative comparison of
the evaluated methods and provides a better insight into their
performance.
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Fig. 9. The graph depicts cumulative distribution function errors of WhyCode,
WhyComb and Convolution on the Occluded dataset. The function shows
the probability that the method will have an error equal to or less than the
threshold on the x axis.

Figure 9 shows that the WhyCode generally produces a
higher localisation error, which is mainly caused by lower
detection rates due to occlusions. It also indicates that, while

the convolution is able to track the queen’s position, it tends
to produce errors higher than 100 pixels due to misdetections.
The figure shows that the WhyComb method can track par-
tially occluded markers, similarly to the convolution, and the
WhyComb’s misdetection rate is much lower than the other
methods. Unlike WhyCode, the WhyComb and convolution
were not designed to achieve subpixel resolution, which is
reflected in the quantization of the results in the Figure 9.

E. Precision and recall

Finally, we calculate the precision and recall of the com-
pared methods. Both the WhyComb and convolution will
always retrieve an estimation of the position of the honey bee
queen due to the convolution pattern matching will always find
a local maximum. Therefore, the recall of these methods will
be 100%. To determine the precision, we have set a threshold
of localisation error to 7 pixels, which is the minimal marker
radius.

TABLE II
COMPARISON OF THE PRECISION AND RECALL OF THE INDIVIDUAL

METHODS

Method Precision Recall
WhyComb 98.7% 100.0%
WhyCode 97.6% 40.5%
Convolution 92.8% 100.0%

Table II summarises the precision and recall of the evaluated
methods. The results indicate that WhyComb achieved higher
recall and precision compared to WhyCode. The WhyComb’s
precision also exceeded convolution-based detection, making
WhyComb superior to both baseline methods.

F. Testing the filters

Finally, to evaluate the filters implemented in Section III-B,
we used a subset of the ‘FalsePos’ dataset. The inner ellipse
filter removed 81.2% of the false detections, and a subsequent
size check improved the rejection rate to 98.7%. Thus, only
eight images remained out of the original 635 false positive
detections produced by the WhyCode method on the 27000
image sequence. This indicates that the precision of the Why-
Comb method, as shown in Table II, is caused by imperfect
results of the convolution rather than by the WhyCode-based
detection step.

V. CONCLUSION

This paper presented a vision-based system for detecting
and tracking a honeybee queen. To achieve real-time per-
formance despite the large image resolution and the small
marker size, we decided to base our system on the WhyCode
method [23], [28]. We combined the WhyCode method with
convolution-based detection and additional filtering steps to
resolve issues with frequent occlusions and misdetections.
This resulted in novel detection and localisation methods,
dubbed WhyComb. Our experiments, based on infrared images
gathered in real beehive colonies, showed that compared to



the other methods, the WhyComb achieves higher accuracy,
precision and recall while maintaining real-time performance.

Fig. 10. Prototype RoboRoyale manipulator with passive agents.

To ensure interoperability with the other system components
and easy data handling, we implemented it as a Robot Oper-
ating System (ROS) node. This allowed its smooth integration
into a complex system for long-term observations of honeybee
queen activity inside a honeybee colony. The system started
to operate in March 2021, and over its lifetime, it produced
more than 100 million images of honeybee queens, showing
how they interact with the rest of the colony.

Furthermore, individual components of the RoboRoyale
manipulator prototype, see Figure 10, were deployed to the
observation beehive [12], and the tracking method was used
to guide the manipulator head in a closed-loop manner, i.e.,
the manipulator’s head was physically tracking the queen. This
allowed us to boost further the resolution and quality of the
images obtained.
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